

Learning from Doing: CCUS Reference Cases

Keith Burnard IEA Greenhouse Gas R&D Programme

2017 NETL CO2 Capture Technology Project Review Meeting

21-25 August 2017, Pittsburgh, USA

www.ieaghg.org

Membership

Cost-shared Technology Collaboration Programme

Current status of CCUS

- CCS technology is proven and in use around the world
- 22 large-scale CCS projects in operation or under construction globally
 - CO₂ capture capacity of 40 Mt/yr
- > 6 projects in construction as of March 2017
 - 3 projects planned to be operational in 2017 & 3 in 2018
- 5 more large-scale CCS projects at an advanced stage of development planning
 - CO₂ capture capacity of ~ 8 Mt/yr
- 11 more large-scale CCS projects are in earlier stages of planning
 - CO₂ capture capacity of ~21 Mt/yr

Source: Global CCS institute

Worldwide distribution

Source: Global CCS Institute, 2016, "The Global Status of CCS 2016 – Summary Report"

Power sector CCS

- Boundary Dam 3, Canada
 - o 110 MWe, coal-fired
 - Solvent-based technology
 - >1.3Mt CO₂ captured
 - CO₂ used for CO2-EOR
- NRG Parish
 - o 250 MW slip stream
 - Amine-based PCC technology
 - 90% capture
 - CO₂ sold for EOR
- Kemper County
 IGCC technology/lignite

>Osaki CoolGen

- o IGCC Technology/Lignite
 - CO₂ capture slip-stream 2018/19

What have we learnt?

Power sector

- BD3 and NRG are PC boiler retrofits with amine scrubbing technology
 - Both capture units built on schedule and to cost
 Cost over runs at BD3 due to existing boiler retrofit
- Both had existing electricity supply contracts
 - BD3 more efficient turbine offset parasitic load
 - NRG added a new steam boiler for capture unit
- > BD3 could be built again at lower cost
 - 30% CAPEX, 20% OPEX

Business models

>BD3 & NRG (& Kemper)

- Long-term stable fuel price for coal
- Government subsidy for CAPEX
- OPEX offset by sale of products

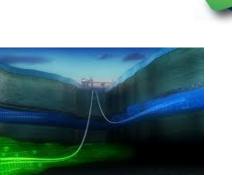
 CO₂, sulphur and ash
 Plus electricity long term supply contracts

>Osaki CoolGen

- Stable low coal price cf. LNG
- Government subsidy for CAPEX
- Electricity sales offset OPEX

Industry CCS

Natural Gas Processing


- Sleipner, North Sea

 20 years operation
 16Mt CO₂ stored
- Snøhvit, Barents Sea

 Operating since April 2008
 0.7Mt/yr CO₂
- Lula, Brazil

 Floating platform offshore
 Membrane capture
- Gorgon, Australia

 3.5Mt/yr CO₂
 Starts operation late 2017

Business models

Sleipner/Snøhvit

- Capture plant cost included
 - Needed to make NG saleable
- Offshore emissions tax of \$35/t CO₂
 - Pays for OPEX and capital investment of compression and pipeline costs

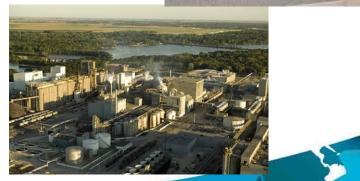
> Lula

Cost recovery through increased oil production

≻Gorgon

Cost recovery through LNG sales

Industry CCS (2)


CCS now deployed in:

- Hydrogen refining/upgrading
 - Quest solvent based technology
 - 1Mt/yr injected into deep saline aquifer
 - o Air Products, PSA technology
 - Over 3 Mt/yr used for CO2-EOR
- Steel sector
 - o Emirates Steel amine-based capture
 - Now operational
 - 0.8 Mt/yr CO₂ for CO2-EOR
- Bioethanol production
 IICCS Project, Illinois USA
 Start up Q2 2017
 - o 1Mt/yr deep saline aquifer

Business models?

Quest and Air Products

- Government support for CAPEX
- Air Products OPEX offset by CO₂ sales
- Quest OPEX offset by CO₂ storage credits

Emirates Steel

- Pre-existing capture facility on DRI plant
- Capital investment only for compression and pipeline
- OPEX covered by additional oil and natural gas revenues

Business models?

IICCS

 Government loans for 1st phase project development – Decatur (300,000 t/yr CO₂)
 Compression, dehydration and storage

components

- Capital investment for phase 2 components
 O Up to 1Mt/yr CO₂
- \$20/t credits (45Q) for storage in deep saline aquifer
 Offsets operating costs

Jubail City CCU Project

CO₂

SABIC CCUS project uses the captured CO₂ to produce methanol and urea

- First commercial application of Linde post-combustion capture technology
- First capture unit on an ethylene glycol plant
- At 500,000 Mt/yr CO₂, it was the biggest commercial capture unit (pre-NRG)
- Business model: CAPEX/OPEX recovered through sale of products

Learnings from UK CCS Competition

VS AND EVIDENCE DERIVED I PROGRAMMES, 2008 - 2019 Key messages

- No technical barriers
- Barriers were financial, commercial and policy related
- Peterhead could have been delivered
- White Rose issues included:
 - o Risks re pipeline leakage
 - Financing of storage component

file://fscluster2/data/IEAGHG/Homes/John.Gale/Documents/CCSA_Lessons_Learned_ report_digital_FINAL_June_2016.pdf

Conclusions from UK Competition

The full chain business model does not work

- UK Government should fund the pipeline and storage component – new national storage company formed
- Building in larger pipeline networks increased the costs for first mover projects
- > Depleted gas fields are a good starting point
- Rules on financing in the EU CCS Directive may be too onerous
- EU State Aid rules may prevent UK investment in such projects

Norwegian model

Industrial CCS Programme under development

- 3 industry FEED studies underway
- Decision by Spring 2018 to proceed with one (or more projects)
- Commercial operation by 2021
- Capture facility separated from storage component
 - New storage and transport company to be set up

• Ship transport and offshore storage

o Funded by storage credits

Transport infrastructure

>EU example

 Funded from EU infrastructure fund with multiparty access rights

>UK example

 Industrial hubs under development funded by CO₂ storage credits?

>USA example

- Finance increase of existing CO₂ pipeline network
 - Section 45Q tax credit for CO₂ sequestration
 - o U.S. DOE's Loan Programs Office

Summary

- Significant progress has been made on CCUS demonstration project deployment
- > 22 CCUS projects now operating worldwide storing 40 MtCO₂/yr
 - Most required Government support
 - Some industry projects are commercial without
- > Early projects have identified cost reductions for next build plants
 - Learning by doing helps drive down costs
- Government support will still be needed to help drive down costs and/or make a business model attractive to industry
- Ultimately we need to create business models that allow projects to be self financing
 - No "one size fits all solution"
- Need to build out from existing transport and storage infrastructure
 - Options to finance additional infrastructure through government loans, taxes or storage credits are being considered
 - Government investment needed to prove storage resource globally

BIRMINGHAM, ALABAMA, 5-8 SEPTEMBER 2017

Co-hosted by:

8

ustralian Government enartment of Industry Innovation and Science

www.ghgt.info **MELBOURNE, AUSTRALIA, 21-26 OCTOBER 2018**

- Call for abstracts opens 1st September 2017
- Deadline 31st December 2017
- **Registration opens early March 2018**
- **Technical programme announced 1st May 2018**

Thank you!

www.ieaghg.org

www.linkedin.com/groups/IEAGHG-4841998

https://twitter.com/IEAGHG

www.facebook.com/pages/IEA-Greenhouse-Gas-RD-Programme/112541615461568?ref=hl

